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Abstract

A new enhanced matrix power function (MPF) is presented for the construction

of cryptographic primitives and an Asymmetric Cipher in non-commutative cryp-

tography. As stated in previously published papers, a matrix power function is an

action of two matrices powering some base matrix on the left and right. The inver-

sion equations of MPF, analogous to the MPF problem, are derived and have some

structural similarity with equations of classical multivariate quadratic (MQ) prob-

lem. The matrix power function problem seems to be more complicated unlike

the MQ problem, as its equations are not defined over the field, but are repre-

sented as leftright action of two matrices defined over the platform semi-groups

and in particular, over the Galois Field GF (pq). The main results are: (1) the

proposal of key exchange protocol based on nonsymmetric and noncommuting al-

gebraic structures, i.e GF (pq). (2) the algebraic structures are proposed for the

construction of asymmetric cipher based on matrix power function. (3) the presen-

tation of preliminary security analysis. These results allow us to consider that the

enhanced MPF can be a candidate one-way function (OWF), since the effective

(polynomial-time) inversion algorithm for it is not yet known. Detailed examples

of the application of the proposed Matrix power function for the Key Agreement

Protocol (KAP) and an Asymmetric Cipher are presented. Since the direct MPF

value is computed adequately, the proposed MPF is suitable for the realization of

cryptographic protocols in devices with restricted computation resources.
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Chapter 1

Introduction

There is a major need of secure channel for wireless networking and secret com-

munication for decades, since the advancement of communication technology is

influencing the development of more reliable authentic cryptosystems. Over 2000

years, shift ciphers based on alphabets have been used. Later on many ciphers

were introduced for sending codes or secret messages. For example, mono alpha-

betical cipher, playfair cipher, four square cipher, hill ciphers of different orders,

etc. With the passage of time resistance to these cryptosystems has been intro-

duced and there has been numerous attacks applicable on them.

Cryptography [1] actually gives us tools to conceal the sensitive information and

transmit it confidentially over the susceptible communication channel. For this

purpose cryptography gives us basic structure known as cryptosystem. This sys-

tem has five major constituents named as plaintext, encryption algorithm, decryp-

tion algorithm, ciphertext and key.

Purpose of cryptography [2] is not only encryption and decryption but to provide

safety for information and data. Cryptography gives data confidentiality, authen-

ticity, availability and integrity.

There are two major classification of cryptography based on key administration

known as Symmetric key cryptography [3] and Asymmetric key cryptography [3].

In Symmetric key cryptography, only one key is handed over to both the par-

ties to scramble or unscramble the data but the main issue with this technique is

1
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key distribution when there are large number of participants in one protocol. If

this key is disclosed communications get compromised. Examples of symmetric

key cryptography involves DES systems [4] and AES systems [5]. To overcome

the significant key issue in symmetric key cryptography, In 1976, Asymmetric key

cryptography was introduced by Diffie-Hellman [6]. This idea brought revolution

in cryptosystems and resolved the key distribution issues. Asymmetric key cryp-

tography operates with pair of keys. In Asymmetric key cryptography, encryption

and decryption is performed by two different keys, so that knowledge of encryption

key is not exactly equal to knowledge of decryption key. Hence, the security of

the cryptosystem is not compromised. Examples of Asymmetric key cryptography

involves ElGamal [7], RSA [8], Elliptic curve cryptography (ECC) [9], etc.

Recent technologies affecting the advancement of cryptographic protocols are In-

ternet Of Things(IOT) [10] and Quantum computers [11]. The resistance to quan-

tum cryptanalysis became important after the proposal of polynomial time quan-

tum cryptanalysis by Peter W. Shor [12]. For conventional cryptographic primi-

tives named as Diffie-Hellman, RSA, ECC cryptosystems the security to quantum

crytanalysis became more challenging.

The creation of One Way Functions (OWF)[13] is a modern trend these days and

its security relies on Non-acceptance Polynomial time NP hard problems [14].

NP problem is easy to confirm that proposed solution is true but its difficult to

be assured that its the only true solution that exists. For example, the given set

{−8,−4,−2, 1, 5, 8} sums upto to zero. Is there any other non empty subset that

sums upto zero? and the answer to this is yes, i.e {−4,−2, 1, 5}.

Effective cryptanalysis algorithms that can solve NP problems [14] are not known

yet. Therefore cryptosystems based on one way functions is a noteable part of

quantum cryptography. Many cryptographic primitives that can resist quantum

crptanalysis has been created such as lattice based cryptography. One of them

is one way function based on multivariate quadratic problem (MQ) [15] which

has been proved to be NP complete [16] and NP hard [17]. Said OWF has some

connection with the proposed one way function based on enhanced matrix power

function (MPF) problem. Additional drift for constructing primitives in post
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quantum cryptography is of using algebra based non-commutative structures. In

[18], author suggested this theme.

The focal aim for these swings was administration towards the use of non com-

mutative [19] groups like “braid groups, Thompson groups, polycyclic groups,

Grigorchuk groups, matrix groups, etc”.

An entralling proposal based on non-commutative groups was presented by Anshel-

Goldfield in [19]. In this book, author designed key exchanging based on commu-

tator equality by introducing the notion of algebraic eraser.

Anyhow, nearly these perspectives were cryptanalyzed and their shortcomings

were proclaimed.

Variety of corresponding papers can be found following from year 2017, but they

utilize non-commutative group in their own ways like using structures having non

symmetry, problems based on group rings like Learning With Errors (LWE) [20].

It can be seen that not only non-commutative structures but also non symmetric

structures are employed. Idea of using matrix power function in cryptography was

initiated by Sakalauskas in [21]. In [22], a captivating new enhanced matrix power

function was proposed as a continuation of above said publications in this field.

Initially, the Matrix power function was launched in [21] for establishing symmet-

ric cipher. The further implementations for asymmetric primitives constructions

were performed in [23–26].

1.1 Current Research

In this dissertation, a new key exchanging scheme is proposed on the basis of

enhanced matrix power function and also a new and modified version of an asym-

metric cipher based on matrix power function is introduced.

The focal aim of this research is to establish a matrix power function having

algebraic structure that is non-commutative and non-symmetric. This can be as-

summed that it will be more resistance to quantum cryptanalysis [27]. Since it

is better than that algebra based structures which have some kind of periodicity

and symmetry. This proposal is different from other non commutating algebraic
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structures.

The following tasks are performed in this research.

1. The construction of enhanced matrix power function is based on extended

Galois field and finite field because of its large key space and enhanced

security.

2. Using the MPF, we have proposed a new key exchange scheme based on

discrete log problem.

3. The construction of new and modified version of an asymmetric cipher based

on matrix power function with Galois field in its platform is proposed.

4. We have developed codes and algorithms using computer algebra software

“ApCoCoA” [28] for effective computations.

The rest of the dissertation is compiled as follows:

In Chapter 1, we have discussed the idea of cryptography and introduced our

thesis.

In Chapter 2, we have given the basic definition and concepts of algebra and

cryptography to enlighten the idea that is going to be presented in the succeed-

ing chapters. In the form of sections, the brief description of the cryptography,

cryptanalysis, basic notions of Matrix power function, Public key authority and

Diffie-Hellman key exchange protocol is discussed.

In Chapter 3, we have four sections. First section is about the general overview of

enhanced matrix power function with some definitions and properties. In second

section we have proposed an algorithm for key exchanging based on matrix power

function using Galois field GF (pq) and general linear group GL(Zp). Third section

deals with the toy example with artificially small matrix order to explain this idea.

Also there are two illustrative examples and their calculations are carried out with

the help of Computer algebra system “ApCoCoA”.

In Chapter 4, we have reviewed an article named as “ New Asymmetric cipher

of non-commuting cryptography class based on matrix power function by Eligijus

Sakalauskas, Aleksejus Mihalkovich published in 2014” [23]. We have inquired and
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reviewed the calculation performed in this paper and also in the light of this pa-

per, we have proposed a modified version of this scheme using Galois fields. Also

there are two examples to demonstrate the proposed Asymmetric cipher. All the

calculation are performed with the help of Computer algebra system “ApCoCoA”.



Chapter 2

Preliminaries

In this chapter some basic definitions from cryptography and key management are

presented. Furthermore, some basic definitions from algebra are also highlighted

for further assistance.

2.1 Cryptography

Cryptography is the science of secure communication between two parties in the

presence of malicious entity over the public channel. More specifically, cryptog-

raphy [3] is about the construction and analysis of protocols that block hackers

from accessing secret messages. This entire process of secure communication is

carried out by the help of a system named as cryptosystem. This system con-

sists of five components named as plaintext, ciphertext, encryption algorithm,

decryption algorithm and the key. Plaintext is the original message where as the

encrypted message is called ciphertext. The plaintext is concealed by ciphertext

via the encryption algorithm. The ciphertext is then retrieved back to plaintext

by the receiver or an authenticated person via the decryption algorithm. Both

sender and receiver use a secret key to encrypt the original message. The whole

security of this cryptosystem is based on the key security, otherwise the secrecy is

compromised.

6
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2.1.1 Purposes of Cryptography

Cryptography not only secure the messages, but also elevates physical world issues

that need inviolability of data. In current era, the main purposes [2] of cryptog-

raphy are as under:

• Confidentiality: Confidentiality comes up with two embedded qualities, i.e

data confidentiality and privacy.

a. Data Confidentiality: Disclosure or non-availability of personal or

privileged information to adversaries is guaranteed.

b. Privacy: Authority is to be assured to oneself that data associated to

them will not be compromised.

• Integrity: Integrity involves:

a. Data Integrity: There is assurity that the data is reconstructed merely

in a legitimate way.

b. System Integrity: A guaranteed system that fulfills the propose ideas

in an unaffected manner, that is free from illegal exploitation.

• Authenticity: The competency to recognize the individuals that are commu-

nicating with each other and also the source of the data.

• Availability: The accessibility of schemes to certified owners according to their

requirements.

2.1.2 Classification of Cryptography

There are two major classification of cryptography based on key dissemination

known as Symmetric Key and Asymmetric Key Cryptography.

• Symmetric Key Cryptography

• Asymmetric Key Cryptography
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2.1.2.1 Symmetric Key Cryptography

Since 1976 before the development of modern cryptographic schemes, symmet-

ric key cryptography [29] is used over public networks for transmission of secret

messages. The other name for this technique is public key cryptography. In this

technique, both encryption and decryption are done by same and only one key. A

protocol for typical Symmetric key cryptography is shown in Figure 2.1 in which

both participants are using a common key K for data encryption and decryption

which is concealed from attackers. (DES) Data Encryption Standard [3], (AES)

Figure 2.1: Symmetric key Cryptography.

Advanced Encryption Standard [5] and Blowfish [30] are the examples of Symmet-

ric key cryptography. Disadvantages of this cryptosystem include key management

and security issues. Symmetric encryption techniques may be classified as either

block cipher or stream cipher. Block cipher performs encryption and decryption

on a fixed length block of data and gives common block of ciphertext at a time

while stream cipher perform encryption and decryption on one byte of plaintext

at a time.

2.1.2.2 Asymmetric Key Cryptography

In 1976, Whitfield Diffie and Martin Hellman [6] proposed the great idea of asym-

metric key cryptography to reduce the issue of key security. Their belief was based



Preliminaries 9

on one-way trapdoor function which is used in transmission of keys between the

two parties. Its base is mathematical function preferably than the substitution

and permutation. In Asymmetric key cryptography, private and public keys are

used in encryption and decryption of data, actually these keys are not identical

but somehow large enough to be paired together. Private key is stored secret while

public one is publicaly available. The public key of one entity is used to encrypt

message while the other one uses his private key for decryption. The main com-

ponents for public key encryption [18] are as follows in Figure 2.2. The plaintext

Figure 2.2: Asymmetric Key Cryptography.

(M) is encrypted with the help of encryption algorithm (E) and public key (PU)

of the recipient and coverted in ciphertext (C), after receiving the ciphertext, re-

cipient will use his own private key (PR) and will decrypt the encoded message

via decryption algorithm. The structure is given below:

C = E(PU ,M) (2.1)

M = D(PR, C). (2.2)

Examples for Asymmetric key cryptography [31] are RSA cryptosystem [8], ElGa-

mal cryptosystem [7] and Elliptic curve cryptosystem [9].
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2.2 Cryptanalysis

The operation used to crack a system or communication is called an attack [32]

on that system. The main aim of attack is to recover the secret key K and not

only the message.

Cryptanalysts is the person who execute this attack and the process of this whole

attack is known as cryptanalysis [33]. It can be said that a cryptanalyst does

cryptanalysis when there is some weakness in the cryptosystems. Either confiden-

tiality, integrity, authenticity or availability of the crypstosystem is compromised

[34]. There are two general approaches of cryptanalytic attacks such as total-break

attacks and single break attacks.

• Total-break Attacks

In this approach [35], attacker’s main aim is to unveil the secret key or to model

another fake key so that he can decrypt the system successfully.

• Single-break Attacks

In this approach, attacker attempts to retrieve plaintext by using the available

knowledge on public forum.

There are many known cryptographic attacks [36] one can found in the literature,

some of them are discussed here.

2.2.1 Ciphertext Only Attacks

In this category, attacker has the knowledge of encrypted text and the encryption

technique and he tries to reveal the original text. Either with the help of occurrence

of frequency of characters or any other [37].

2.2.2 Known Plaintext Attacks

In this category, attacker has the apprehension of some of the ciphertext as well

as its corresponding plaintext. On this basis, he attempts to recover the key or

makes a logical algorithm to decode any further ciphertexts [38].
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2.2.3 Chosen Plaintext Attacks

In this category, attacker arbitrarily selects plaintext according to his own pref-

erences and tries to obtain ciphertext. Using the combination of these two he

attempts to recover key [34].

2.2.4 Chosen Ciphertext Attacks

In this category, attacker chooses ciphertext [39] according to his wish and tries

to obtain corresponding plaintext and tries to acquire as much information as he

can to obtain the secret key successfully [40].

2.2.5 Man In The Middle Attacks (MITM)

In this category, attacker sits in between the two secretly communicating parties

and gets a hold over communication from both the transmitter and recipient ends.

To perform this man in the middle attack [41], attacker first chooses two fake

keys and then start the transmission with first party using his one key and when

he establish this channel with first party, he gets the encrypted information and

decrypt this with his own keys. Then he encrypts or altered the received message

using his keys and transmits this to second party, when second party approaches

him and establish communication he dercypts their encrypted information using

his keys. In this way one can interrupt the whole communication by hiding its

real identity from both ends and compromise the security of the system.

2.2.6 Man At The Ends Attacks (MATE)

One of the form of active attack in security of a communication channel found is

a Man at the end attack [42], which is somewhat similar to man in the middle

attack. As in this attack, the malicious entity has a control over device which

allows him to amend or remove the message sent from one side of communication
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channel. As the adversary is a human, therefore has much abilities of a human

mind. Although attacker has sanction and limitless access to the gadget and this

results in all security protections to go in vain for a specific period of time.

Timing has a great role in this attack as attacker must have to reciprocate and

establish the traffic of messages before the legitimate one. The need for a timing

advantage make this attack more difficult to be implemented, as it demands a

beneficent position in the network like internet backbone.

2.2.7 Brute Force Attacks

In this category, attacker attempts every feasible key in order to guess the original

message from encrypted one. With larger key extent, this attack [43] can be made

invalid .

2.3 Mathematical Background

In this section we will present some elementary definitions from algebra that will

be used throughout the thesis.

Definition 2.3.1 (Groups)

The nonempty set G of elements that satisfies the following axioms under the

binary operation ∗ is called a group and is represented by (G, ∗) [44].

G1. Closure Property: Binary operation ∗ is closed, i.e. s ∗ t ∈ G for all

s, t ∈ G.

G2. Associativity: (s ∗ t) ∗ u = s ∗ (t ∗ u) for all s, t, u ∈ G.

G3. Existence of Identities: There exists an element i ∈ G such that

s ∗ i = i ∗ s = s for all s ∈ G. Here i is the identity of set G.

G4. Existence of Inverses: For each element t ∈ G ,∃ t′ ∈ G such that t ∗ t′ =

t′ ∗ t = i. Here i is the identity of G.
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Example 2.3.2 Some examples of groups are given below.

i. Set of complex number C, real numbers R, rational numbers Q, and integers

Z are all group under binary operation addition “ + ”.

ii. Set of real numbers R/{0}, rational number Q/{0} and complex number

C/{0} are groups under binary operation multiplication “ · ”.

iii. Let Zw = {0, 1, 2, ...w − 1} and w > 0 and w ∈ Z is group under the binary

operation defined by addition modulo v that is x ∗ y = (x+ y) mod w.

iv. Set of integers Z does not form a group under multiplication due to absence

of multiplicative inverses ( Inverse of 3 is 1
3

however 1
3
/∈ Z).

v. The set of all n × n matrices A = [aij], with complex coordinates, denoted

by Mn(C) is a group under multiplication.

Definition 2.3.3 (Abelian Group)

A group G is called abelian group [44] if it satisfies the commutative law under

the same binary operation that is for all s, t ∈ G⇒ s ∗ t = t ∗ s.

Example 2.3.4 Some examples of abelian groups are given below.

i. Set of rational numbers Q, real numbers R and integers Z under addition

are abelian groups.

ii. Set of rational numbers Q , romplex numbers C and real numbers R without

zero are abelian groups under multiplication.

iii. Special Linear Group is characterized as SL(Q) = {Q ∈ T(q, q)|det(Q) = 1}

where T (q, q) is matrix of order q×q is a group under matrix multiplication.

It is non abelian group as matrices do not commute in general.

Definition 2.3.5 (Ring)

The Ring [44] denoted by (R,+, .) is the set of elements embedded with two

binary operations addition “+” and multiplication “ ·” that satisfies the following

axioms:
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R1. (R,+) is an abelian group.

R2. (R, ·) is monoid.

R3. Left and right distributive laws of multiplication with respect to addition

holds in R.

Example 2.3.6 Some examples of ring are given below.

i. Set of integers Z under addition “ + ” and multiplication “ · ” is a ring.

ii. Let Zp = {0, 1, 2, ...p− 1} and p > 0 and p ∈ Z is a ring under addition and

multiplication modulo p.

iii. The set of all n×n matrices with real entries under the usual matrix addition

and multiplication forms a ring.

Definition 2.3.7 (Field)

The set (F,+, ·) together with binary operations “ + ” and “ · ” is called field F

[45], if the following properties holds.

F1. F is abelian under addition.

F2. F forms an abelian group under multiplication (only nonzero elements).

F3. Multiplication is distributed over addition in F .

Example 2.3.8 Some examples of field are given below.

i. Real numbers R and rational numbers Q forms field under addition and

multiplication.

ii. For every prime p, set of integers Zp under mod p is a field.

iii. The set of all n×n matrices with entries of real numbers under the traditional

matrix addition and multiplication forms a field.

Definition 2.3.9 (Extension Field)

Let F and S be two fields then F is the extension field [45] of S, denoted by F/T ,

if T is the subfield of F under the restricted operations of S.
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Example 2.3.10 Some examples of extension fields are given below.

i. The field of complex numbers is the extension field of the field of real num-

bers, denoted by C/R.

ii. Let p(u) = u2 + 1 ∈ Z3(u) then there exist the extension field T of Z3 such

that T = Z3(u)/u2 + 1.

The field Z3(u)/u2+1 is represented as {0, 1, 2, u, u+1, u+2, 2u, 2u+1, 2u+2},

which is the set of all polynomials in u of degree less than 2 with coefficients

from Z3

Note that (u2 + 1) + (u2 + 1) = 0 this implies that u2 + 1 = 0 so u2 = −1 =

2. Therefore, in T there exist the polynomials that are irreducible in mod

(u2 + 1).

2.4 Galois Field

A finite field [47] named as Galois field was first proposed by the French math-

ematician Evariste Galois in 1830. Galois field [48] is a finite field with order as

a prime or extended. Let p be a prime number, a finite field with p elements

denoted by GF (p) or Zp , consists of set of integers Zp = {0, 1, 2, · · · , p− 1} with

arithmetic operations modulo p. As p is prime, so gcd(p,s)=1 for each s ∈ Zp that

is p is relatively prime to every element of Zp.

Definition 2.4.1 (Polynomial Over GF (p))

The given expression having ‘x’ as a variable is a polynomial f(x) over GF (p).

F (x) = aix
i + ai−1x

i−1 + · · ·+ a1x+ a0 for all i = 0, 1, · · · , n.

where the coefficients ai are taken from GF (p).

Definition 2.4.2 (Irreducible Polynomial)

A polynomial m(x) of degree q is said to be irreducible [49] if it cannot be decom-

posed as m(x) = g(x)h(x) with polynomials g(x) and h(x) of degree less than q,

otherwise it is known as reducible polynomial. For example, x6+x5+x4+x3+x2+x
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is reducible polynomial over GF (22), and x3 + x2 + x, x3 + 1 are irreducible poly-

nomials over GF (22).

2.5 Extended Galois Field GF (pq)

An extension of a field to prime order is called an Extended finite field GF (pq)

[50] with q a positive integer number, where GF (pq) is the set of all polynomials

over GF (p) of degree less than q and coefficients from GF (p). In the examples

below, we will represent some elements from Galois fields in tablular form.

Example 2.5.1 Elements of GF (28)

The elements in GF (28) [51] are polynomials having degrees less than 8, with

coefficients in GF (2) = {0, 1} reduced under polynomial modulo by using an

irreducible polynomial of degree 8. It consist of 256 different elements with 8-bits

binary representation. All the elements of GF (28) are shown in the Table 2.1.

Decimal Polynomial Binary

0 0 00000000

1 1 00000001

2 β 00000010

3 β + 1 00000011

4 β2 00000100

5 β2 + 1 00000101

6 β2 + β 00000110

7 β2 + β + 1 00000111

8 β3 00001000

9 β3 + 1 00001001

10 β3 + β 00001010

. . .

255 β7 + β6 + β5 + β4 + β3 + β2 + β + 1 11111111

Table 2.1: Elements of Galois Field GF (28)

Example 2.5.2 Elements of GF (210)

The elements of GF (210) are polynomials having degrees less than 10, with coeffi-

cients in GF (2) = {0, 1} reduced under polynomial modulo by using an irreducible



Preliminaries 17

polynomial of degree 10. It consist of 1024 different elements with 10-bits binary

representation. All the elements of GF (210) are shown in the Table 2.2.

Decimal Polynomial Binary

0 0 0000000000

1 1 0000000001

2 β 0000000010

3 β + 1 0000000011

4 β2 0000000100

5 β2 + 1 0000000101

6 β2 + β 0000000110

7 β2 + β + 1 0000000111

8 β3 0000001000

9 β3 + 1 0000001001

10 β3 + β 0000001010

. . .

. . .

1024 β9 + β8 + β7 + β6 + β5 + β4 + β3 + β2 + β + 1 1111111111

Table 2.2: Elements of Galois Field GF (210)

2.6 Multiplicative Inverses in Galois Field

As the elements of Galois Fields are represented by polynomials so we need to

find their inverses too. For this we use Extended Euclidean Algorithm [52] to find

inverse of any polynomial in Galois field GF (pq). We can find the multiplicative

inverse of any polynomial r(x) ∈ GF (pq) modulo an irreducible polynomial m(x)

when gcd(r(x),m(x))= 1 with the help of underlying algorithm. r(x) mod m(x)

is as follows:

Algorithm 2.6.1 (Extended Euclidean Inverse Algorithm)

Input: A polynomial r(x) and an irreducible polynomial m(x).

Output: r−1(x) mod m(x).

1. Boot six polynomials Ai(x) and Bi(x) for i = 1, 2, 3 as

(A1(x), A2(x), A3(x)) = (1, 0,m(x))

(B1(x), B2(x), B3(x)) = (0, 1, r(x))
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2. If B3(x) = 0, return A3(x)=gcd(r(x),m(x)) ; no inverse of r(x) exist in mod

m(x)

3. If B3(x) = 1 then return B3(x)=gcd(r(x),m(x)) and

B2(x) = r−1(x) mod m(x)

4. Now divide A3(x) with B3(x) also find the quotient Q(x) when A3(x) is

divided by B3(x).

5. Set (Ti(x) = (Ai(x)−Q(x).Bi(x)) ; i = 1, 2, 3.

6. Set (A1(x), A2(x), A3(x)) = (B1(x), B2(x), B3(x))

7. Set (B1(x), B2(x), B3(x)) = (T1(x), T2(x), T3(x))

8. Goto step number 2.

2.6.1 Diffie-Hellman Key Exchange Protocol(DH)

Initially, the concept of public key protocols was given by Ralph Merkle afterwards

Diffie and Martin Hellman proposed this idea [6]. DH is used to exchange keys

safely over the public network. This key sharing not only support two parties

but more than that. DH is highly useful primitive because shared secret key can

be helpful to establish a session key secretly that is used in number of different

symmetric cryptosystems.

The Diffie-Hellman Key exchange protocol is briefed in following Figure 2.3.

Figure 2.3: Diffie-Hellman Key exchange protocol.



Preliminaries 19

Key agreement protocol between two users is as follows:

• User A generates xa < q at random, and calculates Ya = βxa mod q and sends

it to user B.

• User B generates xb < q at random, and calculates Yb = βxb mod q and sends it

to user A. Also calculates secret shared key as K = (Ya)
xb mod q.

• User A calculates secret shared key as K = (Yb)
xa mod q.

Definition 2.6.2 (Discrete Logrithm Problem (DLP))

Suppose we have an expression ak, and we need to find k when a and ak is given.

This is known as discrete log problem. The discrete log problem [53] is usually

known as hard problem because it is quite impossible to determine. Also it is to

be noted that small order of group can easily be attacked using brute force attack

but still its difficult for large order groups.

Definition 2.6.3 (Conjugacy Search Problem (CSP))

For the given elements u, v in a noncommutative group G, the problem of deter-

mining the conjugator w ∈ G such that uw = w−1uw = v is known as conjugacy

search problem (CSP).

Definition 2.6.4 (Carmichael Number)

Robert Carmichael gave the idea of Carmichael number. A Carmichael number [54]

is a composite number which verifies the congruence relation bm−1 ≡ 1 (mod m)

for all integers b that are relatively prime to m, in modular arithmetic.

The function associated with these numbers are called Carmichael function and

its values are given by the following formula

λ(n) = lcm [(pi − 1)p
(αi−1)
i ]i

where p
(αi)
i are prime integers.

Definition 2.6.5 (Carmichael Theorem)

If s and m are co-prime numbers so that the greatest common divisor

gcd (s,m) = 1, then sλ(m) = 1( mod m), where λ is the Carmichael function.
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2.7 Public Key Authority (PKA)

Distribution of public keys is a challenging task. By securing the control over

distribution of keys from directory we can achieve stronger security for distribution.

It should have the properties of directory, that means this situation suppose that a

focal authority keeps an effective directory of members public keys. This demand

that users know the public key of the directory. Users then negotiate with directory

to acquire any desired public key securely, for this there should be immediate access

to the directory whenever keys are required. The protocol for public key authority

is briefed in following Figure 2.4.

Protocol between two users and public key authority is as follows:

(1) Initiator A sends requests for the public key of user B at some recorded time

to the public key authority.

(2) The authority then encrypt the public key of the other desired user B along

with the request and request time of A with the help of their own private

key.

(3) Initiator A then sends the encrypted message to the responder B, and that

message consists of identity of A along with the specific number N1. En-

cryption of this message is done by the public key of B, which can only be

decrypted by the private key of B.

(4) Responder B sends requests for the public key of user A at some recorded

time to the public key authority.

(5) The authority then encrypt the public key of the desired user A along with

the request and request time of B with the help of their own private key.

(6) Responder B then sends the encrypted message having N1 and N2 to the

initiator A. Encryption of this message is done by the public key of A, which

can only be decrypted by the A’s private key.

(7) Initiator responds back with encrypted message having N2 that is encrypted

by public key of B.
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Figure 2.4: Public Key Authority.

2.8 Public Key Certificates (PKC)

Real time access to the public key authority is sometimes difficult, so overcome

this issue and maintaining the secrecy certificates are issued that are as authentic

as the keys acquired directly from concerned authority. This certificate holds

identity and other information like validity period, usage rights etc. to public key

of the corresponding user with all constituents signed by a reliable Public Key

or Certificate Authority (CA). Anyone can verify this who has the knowledge of

authority’s public key or by the attached trusted signature. The X.509 standard

is the universally accepted scheme for public key certificates. The protocol for

public key certificates is briefed in following Figure 2.5.

Requirements for Public Key Certificates is as follows:

i. Owner’s name and public key of any certificate can easily be obtained.

ii. Verification of the certificate by certificate authority that it is not counter-

feited.

iii. Certificate authority (CA) has only the authority to create or update any

certificate.

iv. Validity of the desired certificate can be verified by any participant [55].
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Figure 2.5: Certificate Authority.

2.9 Toeplitz Matrices

“A matrix in which each declining diagonal from left to right is constant is called

a Toeplitz matrix [56] or a diagonal-constant matrix and it is named after the

German mathematician Otto Toeplitz”. A Toeplitz matrix is not necessarily a

square matrix. If the i, j element of T is denoted Ti,j, then we have

Ti,j = Ti+1,j+1 = ai−j.

For example, A 5× 5 Toeplitz matrix is given as:

T =



a0 a1 a2 a3 a4

a5 a0 a1 a2 a3

a6 a5 a0 a1 a2

a7 a6 a5 a0 a1

a8 a7 a6 a5 a0


.

2.9.1 Circulant Matrices

“A circulant matrix [57] is a special kind of Toeplitz matrix where each row vector

is shifted by one element to the right relative to the preceding row vector, enclosing
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cyclically, i.e every row is a circular shift of the first row”.

When an additional property, i.e ai = ai+n is added to Toeplitz matrix, it becomes

a circulant matrix. For example: A 5× 5 circulant matrix is as follows.

C =



a0 a1 a2 a3 a4

a4 a0 a1 a2 a3

a3 a4 a0 a1 a2

a2 a3 a4 a0 a1

a1 a2 a3 a4 a0


.

2.9.2 Properties of Circulant Matrices

Circulant matrices and the eigenvectors gives us magnificent efficient algorithms

named as fast Fourier transform (FFTs) [58], that play a pivotal role in computa-

tional science and engineering.

i. The circulant matrices [59] hold a surprising property that is the eigenvectors

of circulant matrices are always the same. The eigenvalues are different for

each matrix, but since we know the eigenvectors we can easily diagonalize

them.

ii. Multiplying a circulant matrix with a vector matrix gives us a special kind

of operation that is circular convolution. For this property these kind of

matrices holds special significance in many fields like in number theory [52],

cryptography [3], simulations [60], digital signal processing [61] etc.

iii. The eigenvectors can be written as a primitive root of unity.

ωn = e
2πi
n

The quantity ωn has the very special property that ωnn = e2πi = 1 = ω0
n,

but no smaller power equals 1. Therefore, ωj+nn = ωjnω
n
n = ωjn that is the

exponents of ω are periodic.
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2.10 Matrix Power Function (MPF)

A function that determines a matrix which is obtained by powering a given matrix

by two numerical matrices on left and right side is known as matrix power function.

It is some kind of similar to multiplication of a matrix by two matrices on both

sides, respectively. The matrix having matrices as a power is named as based

matrix while the the matrices that are in powers are known as power matrices.

Generally, the base matrix is defined over the multiplicative semigroup S and

power matrices over the numerical semiring R. The base matrices and power

matrices are taken from matrix semigroups MS and MR respectively.

Definition 2.10.1 (Left Sided MPF)

This left sided MPF is given by a matrix W powered by another matrix X on the

left, with value equal to some matrix A = {aij}. The formation is as follows:

XW = A, {aij} =
m∏
k=1

wxikjk (2.3)

If X,W are matrices of order 2, then XW is computed as follows:


x11 x12

x21 x22

 w11 w12

w21 w22

 =

wx1111 .w
x12
21 wx1112 .w

x12
22

wx2111 .w
x22
21 wx2112 .w

x22
22


Example 2.10.2 If X,W are in M2(F) as

X =

3 1

2 2

 ,W =

4 2

1 6

 then

XW =


3 1

2 2

 4 2

1 6

 =

64 48

16 144


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Definition 2.10.3 (Right Sided MPF)

This right sided MPF is given by a matrix W powered by another matrix Y on

the right, with value equal to some matrix B = {bij}. The formation is as follows:

W Y = B, {bij} =
m∏
k=1

w
ykj
ik (2.4)

If W,Y are matrices of order 2, then W Y is computed as follows:

w11 w12

w21 w22



y11 y12

y21 y22


=

wy1111 .w
y21
12 wy2111 .w

y22
12

wy1121 .w
y21
22 wy2121 .w

y22
22


Example 2.10.4 If W,Y are in M2(F) as

W =

4 2

1 6

 , Y =

2 3

3 1

 then

W Y =

4 2

1 6



2 3

3 1


=

128 128

216 6


Definition 2.10.5 (Two Sided MPF)

The two sided MPF is given by a matrix W powered by two matrices, X on the

left and Y on the right, with value equal to some matrix C = {cij}. The formation

is as follows:

XW Y = C, {cij} =
m∏
k=1

m∏
`=1

w
xik.y`j
k` (2.5)

If X,W, Y are matrices of order 2, then XW Y is computed as follows:
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
x11 x12

x21 x22

 w11 w12

w21 w22



y11 y12

y21 y22



=

wx11y11

11 .wx12y11

21 .wx11y21

12 .wx12y21

22 wx11y12

11 .wx12y12

21 .wx11y22

12 .wx12y22

22

wx21y11

11 .wx22y11

21 .wx21y21

12 .wx22y21

22 wx21y12

11 .wx22y12

21 .wx21y22

12 .wx22y21

22


Example 2.10.6 If X,W, Y are in M2(F) as

X =

3 1

2 2

 ,W =

4 2

1 6

 , Y =

2 3

3 1



then XW Y =


3 1

2 2

 4 2

1 6



2 3

3 1



=

64 48

16 144



2 3

3 1



=

452984832 12582912

764411904 589824


Definition 2.10.7 (One Way Function (OWF))

A function [13] that gives value at every input but its inversion is considered to

be hard.

Definition 2.10.8 (Matrix Multivariate Quadratic (MQ) Problem)

[15] Consider that a matrix Q is described over some cyclic group A given that

the generator of the group is a. A discrete logarithm lda having base as generator

of E = XQY can be related to E,Q to get

ldaE = ldXa Q
Y = XldaQY = XHY,
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where ldaE and ldaQ implies, H = ldaQ. So, assume thatH and ldaE are specified,

finding the unknown matrices X and Y is referred as matrix MQ problem. This

problem resembles the popular NP-complete problem and named as multivariate

quadratic (MQ) problem. “Matrix MQ problem is a candidate one way function”,

which is proved in [62–64] with the help of conjectures as the inversion of this

problem is associated with the NP complete solutions of popular MQ problems

over any field.



Chapter 3

Cryptographic Primitive

Construction Based on Enhanced

Matrix Power Function

In this chapter, we have proposed a new scheme whose theme is taken from Eligi-

jus Sakalausas research article named as “ Enhanced Matrix Power Function for

Cryptographic Primitive Construction” [22]. In this scheme, we have replaced base

matrix with polynomial matrix from Galois Field and powering matrices with ma-

trices from general linear group. Also we have used computer algebra system

“ApCoCoA” [28] to solve the key protocol algorithm used here.

3.1 Properties of Matrix Power Function

Matrix power function is associated with following properties.

Property 1. One sided associativity holds in matrix power function (left-right

respectively). If the following identity is true.

Y (XW ) = (XY )W = XYW (3.1)

28



Cryptographic Primitve Construction Based on Enhanced MPF 29

(WX)Y = W (XY ) = WXY (3.2)

Property 2. Two sided associativity holds in matrix power function. If the

following identity is true.

(XW )Y = X(W Y ) = XW Y (3.3)

Definition 3.1.1

A matrix power function is considered as associative if it holds both one-sided and

two-sided associativity.

Definition 3.1.2

The computation of immediate value for matrix power function is to search matrix

C in equation 2.5, when matrices W,X and Y are given.

Definition 3.1.3

The computation of reverse value for matrix power function is to search for ma-

trices X and Y in equation 2.5, when matrices W and C are given.

Conjecture 3.1.4 The construction of cryptographic protocol based on MPF

has the following necessary conditions.

1. It holds associative law.

2. Matrices X and Y are taken as circulant matrices because circulant matrices

holds commutative property. So for any circulant matrices U and V .

UX = XU, (3.4)

Y V = V Y (3.5)

3. MPF satisfies the following clauses.

i. The computation of direct MPF value is computationally easy.

ii. Without the knowledge of polynomial time algorithm, the MPF prob-

lem is polynomially identical to a certain hard problem.
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Conjecture 3.1.5 Since problems based on MPF are polynomially equivalent to

the particular sort of generalized multivariate(MQ) problems [15] that are assumed

to be hard. So it can be observed as a potential candidate of one way function for

the cryptographic primitive construction.

Conjecture 3.1.6 For constructing key agreement protocol (KAP), MPF is con-

sidered as a candidate one way function.

1. The computation of direct MPF value is algorithmically effective.

Whereas, the computation of direct MPF value is to search matrix C in

equation 2.5 , when matrices W,X and Y are given.

2. The computation of Inverse MPF value is infeasible.

Whereas, the computation of inverse MPF value is to search for matrices X

and Y in equation 2.5, when matrices W and C are given.

3. The MPF is associative.

4. The MPF problem is hard according Conjecture 2.

3.2 The Proposed Construction of Cryptographic

Primitive

Diverse cryptosystems are designed using key agreement protocols, like ElGamal

cryptosystem is based on Diffie and Hellman key exchange protocol. Now, we

relate the primitive construction of cryptosystem based on enhanced matrix power

function that can be used in public key cryptosystems having polynomials over

non-commutative Rings [65]. For designing the public key cryptosystem we utilized

variation of Diffie Hellman key exchange protocol.

Algorithm 3.2.1 (Certification) Suppose that Alice and Bob wants secure

communication channel in the presence of adversaries, for this they need a common

secret key K to proceed further. But there may be intruders that interrupt their

message traffic, so firstly both the parties will coordinate with the authorized
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certificate authority to confirm the identity of each other. The certificates will be

obtained by following these steps:

1. Alice wants to get her public key certified, she will send her public key to

authority.

2. Certificate authority then respond back with certificate CA which is en-

crypted by private key of authority having identity of A, authorized public

key of A and the request time of Alice.

3. Meanwhile, Bob also sends his public key to authority.

4. Certificate authority then respond back with certificate CB which is en-

crypted by private key of authority having identity of B, authorized public

key of B and the request time of Bob.

5. Alice now share her certificate CA with Bob.

6. Bob also shares his certificate CB with Alice.

In this way, there establish an authorized way to begin key agreement protocol.

Algorithm 3.2.2 (Key Agreement Protocol) The construction of the key

agreement protocol (KAP) is described as follows.

Input: W ∈ GF (pq) as a public matrix and four secret circulant matrices X, Y, U

and V belonging to general linear group GL(n,Zp).

Output: Common session key K.

Key generation: Key will be generated by following these steps.

1. At random, Alice chooses two secret circulant matrices X, Y ∈ GL(n,Zp),

and then calculate the MPF value and transmits it to Bob.

A = XW Y
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2. Similarly, at random Bob chooses two secret circulant matrices

U, V ∈ GL(n,Zp) to calculate the MPF value and transmits it to Alice.

B = UW V

3. Now Alice will calculate the same secret shared key as

KA = X(UW V )Y (3.6)

4. Then, Bob will calculate the same secret shared key as

KB = U(XW Y )V (3.7)

5. Secret session key K for the both the paticipants is same.

KA = K = KB

We have used general linear group of matrices of finite order over the finite field

GL(n,Zp) for implementing this scheme, as the convolution of the proposed scheme

depends upon conjugacy search problem(CSP) and discrete log problem (DLP).

Correctness: The correctness of the above protocol can be realized as follows:

From equation 3.6 we have,

KA = X(UW V )Y = XUW V Y (3.8)

Using equations 3.3, 3.4 and 3.5 in 3.8 , we get,

KA = UXW Y V

= U(XW Y )V

= KB

Hence ,

KA = KB = K
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The key agreement protocol is briefed in following Figure 3.1.

Figure 3.1: Key exchange protocol.

Example 3.2.3 Let there be two parties named as Alice and Bob, who wants

to communicate securely over a public platform. They both agree on following

parameters to be obvious.

Public Parameter:

i. The base matrix W will be of order 2 over the Galois field GF (22). As we are

doing our computations in Galois field and we know that operations in this

field are done under certain modulo. Here we take irreducible polynomial as

m(x) = x2+x+1. All the calculations will be performed under mod (m(x)).

W =

 x 1

x+ 1 x+ 1

 ∈ GF (2, 22)

ii. Their secret matrices will be circulant matrices over GL(2,Z7), that is Gen-

eral linear group of matrices of order 2 and elements will be from

Z7 = {0, 1, 2, 3, 4, 5, 6}.

Using the algorithm given above, example follows through these steps.

Step 1. Alice chooses two secret circulant matrices [57] at random whose elements
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are taken from general linear group Z7.

X =

3 6

6 3

 and Y =

1 4

4 1


and then she calculates XW Y as follows.

XW Y =


3 6

6 3

  x 1

x+ 1 x+ 1



1 4

4 1



=

x3(x+ 1)6 (x+ 1)6

x6(x+ 1)3 (x+ 1)3



1 4

4 1



=

x3(x+ 1)30 x12(x+ 1)30

x6(x+ 1)15 x24(x+ 1)15


=

1 1

1 1

 mod (x2 + x+ 1)

and send this to Bob.

Step 2. Now, Bob chooses two secret circulant matrices at random whose elements

are taken from general linear group GL(2,Z7) as

U =

5 2

2 5

 and V =

6 1

1 6


and then calculates UW V as follows.
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UW V =


5 2

2 5

  x 1

x+ 1 x+ 1



6 1

1 6



=

x5(x+ 1)2 (x+ 1)2

x2(x+ 1)5 (x+ 1)5



6 1

1 6



=

x30(x+ 1)14 x5(x+ 1)14

x12(x+ 1)35 x2(x+ 1)35


=

x 1

x 1

 mod (x2 + x+ 1)

and send this to Alice.

Step 3. After getting UW V , Alice calculates her secret shared key KA as

KA =X (UW V )Y

=


3 6

6 3

 x 1

x 1



1 4

4 1



=

x9 1

x9 1



1 4

4 1



=

x9 x36

x9 x36


=

1 1

1 1

 mod (x2 + x+ 1)
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Step 4. After getting XW Y , Bob calculates his secret shared key KB as

KB =U (XW Y )V

=


5 2

2 5

 1 1

1 1



6 1

1 6



=

1 1

1 1

 mod (x2 + x+ 1)

Step 5. It can be seen that shared secret key computed by both the participants

is same.

KA = KB = K

Example 3.2.4 There are two parties in our protocol named as “Hen” and

“Ben”. Both the parties consent on public parameters as

i. The base matrix W will be of order 3 and is taken from the Galois field

GF (22).

W =


x 1 x

1 x x+ 1

x+ 1 1 x+ 1

 ∈ GF (3, 22)

ii. Their secret matrices will be circulant matrices and from GL(3,Z5), that is

General linear group of matrices of order 3 and elements will be from

Z5 = {0, 1, 2, 3, 4}.

As we are doing our computations in Galois field and we know that operations in

this field are done under certain modulo. Here we take irreducible polynomial as

m(x) = x2 + x+ 1. All the calculations will be performed under mod(m(x)). The

computations performed below are carried out with the help of computer algebra
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software “ApCoCoA”. Protocol between two parties is as follows.

Step 1. Hen chooses two secret circulant matrices at random from GL(3,Z5).

X =


1 2 3

3 1 2

2 3 1

 and Y =


1 2 1

1 1 2

2 1 1


and calculates XW Y as

XW Y =



1 2 3

3 1 2

2 3 1




x 1 x

1 x x+ 1

x+ 1 1 x+ 1





1 2 1

1 1 2

2 1 1



=


x 1 x

x+ 1 1 1

1 1 x+ 1

 mod (x2 + x+ 1)

and sends it to the Ben.

Step 2. Now, Ben chooses two secret circulant matrices at random from GL(3,Z5)

to compute UW V .

U =


2 2 1

1 2 2

2 1 2

 and V =


3 2 2

2 3 2

2 2 3



UW V =



2 2 1

1 2 2

2 1 2




x 1 x

1 x x+ 1

x+ 1 1 x+ 1





3 2 2

2 3 2

2 2 3


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=


x+ 1 1 1

x x x+ 1

1 x x+ 1

 mod (x2 + x+ 1)

and sends it to the Hen.

Step 3. After getting UW V , Hen will calculate his secret shared key KA as

KA =X (UW V )Y =


x+ 1 x+ 1 1

x x+ 1 x

1 x+ 1 x+ 1


Step 4. Meanwhile, after getting XW Y , Ben will calculate his secret shared key

KB as

KB =U (XW Y )V =


x+ 1 x+ 1 1

x x+ 1 x

1 x+ 1 x+ 1


Step 5. It is clear that the secret shred key obtained by both the parties is same.

KA = K = KB

Example 3.2.5 Let there be two parties, for key exchange protocol both agrees

on the following public parameters.

i. The base matrix W will be of order 4 over the Galois field GF (23). As we are

doing our computations in galois field and we know that operations in this

field are done under certain modulo. Here we take irreducible polynomial as

m(x) = x3 +x+ 1. All the calculations will be performed under mod(m(x)).

The computations performed below are carried out with the help of computer
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algebra software “ApCoCoA”.

W =



x4 + x3 + 1 x4 + x3 + x2 x2 + 1 x4 + x3

x7 + x6 x7 + x5 x4 + x3 + 1 x2 + x

x4 + x2 + 1 x3 + x2 + x x6 + x4 + 1 x + 1

x3 + 1 x2 + 1 x5 + x3 + x x7 + x6 + x4



ii. Their secret matrices will be circulant matrices over GL(4,Z11), that is Gen-

eral linear group of matrices of order 4 and elements will be from

Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Key sharing between two parties is followed as.

Step 1. First person chooses two secret circulant matrices at random from

GL(4,Z11).

X =



5 3 2 6

6 5 3 2

2 6 5 3

3 2 6 5


and Y =



7 6 1 4

4 7 6 1

1 4 7 6

6 1 4 7


to calculate XW Y , which is as follows

XWY =



5 3 2 6

6 5 3 2

2 6 5 3

3 2 6 5




x4 + x3 + 1 x4 + x3 + x2 x2 + 1 x4 + x3

x7 + x6 x7 + x5 x4 + x3 + 1 x2 + x

x4 + x2 + 1 x3 + x2 + x x6 + x4 + 1 x + 1

x3 + 1 x2 + 1 x5 + x3 + x x7 + x6 + x4





7 6 1 4

4 7 6 1

1 4 7 6

6 1 4 7



= [Si] mod(x8 + x4 + x3 + x + 1) for i = 1, 2, 3, 4.
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where Si, represents columns of matrix XWY that are given below1.

S1 =



x7 + x4 + x3 + x + 1

x6 + x2 + x

x7 + x6 + x3 + x2 + 1

x5 + x4 + x + 1



S2 =



x7 + x5 + x3 + 1

x6 + x2 + x

x6 + x3 + x + 1

x7 + x6 + x4 + x2 + 1



S3 =



x7 + x5 + x4 + x2

x7 + x6 + x5 + x4 + 1

x6 + x5 + x3 + x2 + x + 1

x6 + x4 + x3



S4 =



x6 + x4 + x

x6 + x2 + x

x5 + x4 + x2 + x

x6 + x5 + x + 1


and sends this to second person.

Step 2. Second person chooses two secret circulant matrices at random from

GL(4,Z11).

U =



9 6 7 8

8 9 6 7

7 8 9 6

6 7 8 9


and V =



1 1 5 2

2 1 1 5

5 2 1 1

1 5 2 1


1We use this representation because matrix is big in size.
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to calculate UW V , which is as follows

UWV =



9 6 7 8

8 9 6 7

7 8 9 6

6 7 8 9




x4 + x3 + 1 x4 + x3 + x2 x2 + 1 x4 + x3

x7 + x6 x7 + x5 x4 + x3 + 1 x2 + x

x4 + x2 + 1 x3 + x2 + x x6 + x4 + 1 x + 1

x3 + 1 x2 + 1 x5 + x3 + x x7 + x6 + x4





1 1 5 2

2 1 1 5

5 2 1 1

1 5 2 1



= [Si] mod (x8 + x4 + x3 + x + 1) for i = 1, 2, 3, 4.

where Si, represents columns of matrix UWV that are given below.

S1 =



x6 + x5 + x2 + x

x7 + x3 + 1

x5 + x3 + x2 + 1

x7 + x6 + x5 + x3 + x2 + 1



S2 =



x7 + x6 + x4 + x2 + x

x7 + x6 + x4 + x2

x4 + x + 1

x7 + x6 + x2 + 1



S3 =



x7 + x6 + x4 + x3 + x2

x7 + x6 + x5 + x4 + x + 1

x7 + x4 + x2 + 1

x5 + x4 + x



S4 =



x7 + x6 + x

x6 + x5 + x4 + x2 + x

x2 + x + 1

x5 + x


and sends its to the first person.
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Step 3. Secret shared key of first person is same as secret shared key of second

person.

KA = X(UW V )Y = K

KB = U(XW Y )V = K

K = [Si] mod (x8 + x4 + x3 + x+ 1) for i = 1, 2, 3, 4.

where Si, represents columns of matrix K that are given below.

S1 =



x4 + x2 + x

x7 + x5 + x4 + x2

x5 + x4 + x2 + 1

x6 + x5 + x2



S2 =



x5 + x4 + x2 + x + 1

x6 + x3 + x + 1

x7 + x6 + x4 + x2 + 1

x7 + x6 + x5 + x4 + x3 + x + 1



S3 =



x7 + x3 + x2

x5 + x3

x6 + x5 + x3 + x2 + x + 1

x6 + x5 + x4 + x3 + x



S4 =



x5 + x2 + x

x6 + x5 + x3 + x2 + x

x7 + x6 + x4 + x3 + 1

x7 + x6 + x5 + x2 + 1



3.2.1 Computational Cost

The brief inspection of the complexity of our key exchange protocol is as follows:

As the traditional methods for multiplication/inversion of matrices defined over

Zpq takes about O(nwq2 log2 p) bit operations, whereas for the product of two



Cryptographic Primitve Construction Based on Enhanced MPF 43

square matrices, a well known algorithm requires O(nw)Zpq operations and each

Zpq operation needs O(q2 log2 p) bit operations. Consider the rank of a 3n2 ×

2n2 coefficient matrix W is t. We have 0 < t ≤ 2n2 by utilizing the Gaussian

elimination method. If r = 2n2, the matrix has rank N = 0. So, the complexity

of our algorithm is concluded in the following Table 3.1.

Computational cost Explanation

O(2n2pq) Discrete logarithms of two matrices

O(3n2.(2n2)w−1q2 log2 p) 3n2 equations in 2n2 variables

O(3n2(2n2 − r)w−1q2 log2 p) A linear combination of solution space

O(nwq2 log2 p) one time inversion

Table 3.1: Compuatational cost of Key agreement protocol

Hence, the total bit complexity of our protocol is O(n2wq2 log2 p).

3.3 Security Analysis

With the advancement of communication technology, there is large increase in

data vulnerability due to diffusive attacks.

Idea of using enhanced matrix power function is initiated by Sakalauskas in [22].

We have used the enhanced matrix power function for the construction of our

scheme as MPF is a candidate one-way function (OWF), since the effective (poly-

nomial time) inversion algorithm for it is not yet known. By getting the idea

and structure of protocol from the said paper we have proposed a key exchange

protocol based on enhanced matrix power function using platform of semi-groups.

In particular, we have used extended Galois field GF (n, pq) in base matrices and

general linear group GL(n,Zp) in its exponents on both sides which results in

comp-lex algebraic structure that cannot be attacked easily.
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3.3.1 Brute Force Attack

If we choose 60 decimal digits as order of prime p and polynomial with degree

greater than 10 in the Galois field GF (pq), we can acquire a secure protocol, so

that the brute force attack will become infeasible. The public and private matrices

should have (2n − 1) form of order, so that it become a Mersenne prime.

3.3.2 Algebraic Attack

Algebraic attack is a cryptanalytic technique based on solution of system by re-

ducing the whole system in the form of equations. If an adversary is observing

the protocol he has the knowledge of public parameters (ML,MR, A,B,Q), where

A = XQY and B = UQV , then he have to search for the pair of secret keys of

both the participants, so that he can solve the following equations.

A = XQY ,

XML = MLX,

YMR = MRY.

So, If an attacker obtains the matrices X̃ and Ỹ that satisfies the given equations

then attack is feasible.

Hence, to enhance the security and complexity of discrete log Problem, we present

this Key exchange scheme having Galois field GF (pq) as platform semi-rings and

when an adversary wants to attack this protocol by means of this attack, he has to

solve complex pattern of algebraic structures powering algebraic structures which

is quite impossible to be implemented.

Now we will illustrate the above mentioned attack by mounting it on our Example

3.2.3.

Example 3.3.1 Consider the key exchange protocol presented in Example 3.2.3,

the public parameters are

• The base matrix W of order 2 over the Galois field GF (22), whose irreducible
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polynomial is m(x) = x2 + x+ 1.

W =

 x 1

x+ 1 x+ 1

 ∈ GF (2, 22)

• Secret matrices will be over GL(2,Z7), that is General linear group of matrices

of order 2 and elements will be from Z7 = {0, 1, 2, 3, 4, 5, 6}.

We want to find the secret matrices X and Y using all the known public informa-

tion. In order to mount the above stated algebraic attack, we start by assuming

the unknown matrices as

X =

x11 x12

x21 x22

 and Y =

y11 y12

y21 y22

.
Now if the attacker gets access to or hack XW Y given in Example 3.2.3 as

XW Y =

1 1

1 1

 mod (x2 + x+ 1)

Putting X and Y in the above equation, we get


x11 x12

x21 x22

  x 1

x+ 1 x+ 1



y11 y12

y21 y22


=

1 1

1 1

 mod (x2 + x+ 1)

xx11(x+ 1)x12 (x+ 1)x12

xx21(x+ 1)x22 (x+ 1)x22



y11 y12

y21 y22


=

1 1

1 1

 mod (x2 + x+ 1)

xx11y11(x+ 1)x12y11+x12y21 xx11y12(x+ 1)x12y12+x12y22

xx21y11(x+ 1)x22y11+x22y21 xx21y12(x+ 1)x22y12+x22y22

 =

1 1

1 1

 mod (x2 + x+ 1)
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He get the following system of equations,

xx11y11(x+ 1)x12y11+x12y21 = 1 mod (x2 + x+ 1)

xx11y12(x+ 1)x12y12+x12y22 = 1 mod (x2 + x+ 1)

xx21y11(x+ 1)x22y11+x22y21 = 1 mod (x2 + x+ 1)

xx21y12(x+ 1)x22y12+x22y22 = 1 mod (x2 + x+ 1)

The attacker now has to solve four discrete logrithm problem in GF (22). Which

is clearly not feasible. If somehow he become able to correctly guess all the expo-

nents, then he will have to find 8 unknowns from 4 equations. Hence the system is

undetermined and may give infinitely many solutions and it will be impossible for

attacker to obtain the secret session key by mounting the linear algebraic attack.

3.3.3 Man In The Middle Attack (MITM)

As far as simple Key generation scheme is concerned, this is vulnerable to be

intercepted from middle, but as we have introduced public key certificate based

algorithm where authentication of the keys is required, we can prevent this attack.

When both the parties get the authenticated Public key certificated from autho-

rized Certificate authority then no middle man can impersonate and disturb the

communication network.

Also we can overcome this attack with the help of digital signature, one can extend

this work and apply the digital signatures over the proposed key protocol.

3.3.4 Man At The Ends Attack (MATE)

Man at the end (MATE) attack is unnoticed generally in security analysis by an-

alysts because it is strenous to model, examine and assess typically [66]. There

are various versions of MATE attack that depends on the physical framework of

compromised device. For a specific person, altering attack can be implemented

in which attacker alters the integrity of software [67]. In reverse engineering at-

tack, the adversary trace the entitlement from the device software and then alters
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the privacy right of retailor [68]. Likewise, in cloning attack an advarsary may

fabricates and publish the duplicate of software by violating the ownership [69].

Sometimes an attacker may attack by making his own codes using the publicly

exposed codes to deceit any anti-virus software [70].

Although MATE attacks are difficult to examine and model but there are various

techniques to secure our device, like digital asset protection, software protection,

hardware protection and hardware based software protection. For additinal con-

sideration on core protection framework against the MATE attack, we refer to

[42].



Chapter 4

An Improved Asymmetric Cipher

Based on Matrix Power Function

In this chapter, we will review the asymmetric cipher proposed by Sakalauskas,

E. and Mihalkovich, A. in [23], named as “New Asymmetric Cipher of Non-

Commuting Cryptography Class Based on Matrix Power Function”. This cipher

corresponds to the category of intensively emerging non-commuting cryptography

because of expected resistance to probable quantum cryptanalysis [11]. Further-

more, we have extended this work by proposing a modified version of this scheme

by using the platform of Galois Field.

4.1 The Proposed Asymmetric Cipher

To design this public key cryptosystem, authors utilized a finite ring defined on

integers Zn = {0, 1, 2......, n− 1} and performed all the calculations under modulo

n. All the operations performed here are associative and commuting in general.

Z∗n is used to denote the multiplication group of integers that are relatively prime

to n in Zn. The order of this group is determined by φ(n) which is Euler’s totient.

Also Authors have suggested the matrix power function for constructing this ci-

pher, as matrix power function is a candidate one way function and it fulfills

48
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the conjectures given in chapter 3. As the set Z∗n is multiplicative group and we

need powering elements, for this authors referred the Carmichael’s theorem that

sates that for any element a ∈ Z∗n, the element ax has power x from Zλ(n), means

x ∈ Zλ(n) given that λ(n) is the Carmichael function. Carmichael function is de-

fined as the smallest positive integer λ, which satisfies the identity aλ = 1 mod n

for all a co-prime with n. Also Zλ(n) is determined by the value of n.

Remark 4.1.1 According to authors, Alice should choose non singular matrix as

her secret power matrix. But in this said article there is the matrix X taken clearly

singular as given below, which results in the ambiguity of the solution presented

in this paper.

X =


3 0 3

3 3 3

2 3 2

, |X| = 0

The general scheme as proposed in [23] is explained and computed as follows.

Algorithm 4.1.2 (Proposed Cipher)

Let there be two participants Alice and Bob. The protocol is carried as Bob

wants to send coded message M to Alice. He will encrypt that M with the help

of Alice’s public key, and Alice will decrypt that with the help of her own private

key. As we are working in matrices so our proposed M will be in the form of

matrix of order m with entries encoded in binary numbers. Also matrices used to

obtain key matrix are all non-commuting. The construction is explained below.

Public Parameters:

(i) Let Q be the public base matrix selected randomly from matrix semigroup

MS.

(ii) Let Z1 and Z2 be two non-commutative public matrices selected randomly

from matrix ring MR
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Alice will now select a non singular secret matrix X in MR and computes a secret

matrix U with the help of secret polynomial PU chosen at random. Matrix U is

computed as U = PU(Z1).PU(Z2) which is a product of polynomials of Z1 and Z2.

Alice has a pair of private key PrKA = (X,U) and her public key contains triplet

of matrices PuKA = (A1, A2, E).

where

A1 = XZ1X
−1 (4.1)

A2 = XZ2X
−1 (4.2)

E = XQU (4.3)

Encryption: With the help of Alice’s public keys, Bob performs the encryption

in the following way.

1. Bob selects a non singular matrix Y at random from MR.

2. He then computes a secret matrix V with the help of secret polynomial PV

chosen at random. Matrix V is computed as

V = PV (Z1).PV (Z2) (4.4)

Also by using Alice’s public matrices A1 and A2, he computes a matrix W .

PV (A1).PV (A2) = XVX−1 = W (4.5)

3. He then takes matrix E and raise it to the power matrix W = XVX−1 on

the left to obtain XVQU as WX = XV . Also he use his secret power matrix

Y and raise the matrix XVQU by Y on the right and the resulting matrix

will be the key matrix K,

K = WEY =XV QUY (4.6)

which is used for encrypting the message M and the computation of cipher-

text C.
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4. Now, Bob computes the ciphertext C as C = K ⊕M . where ⊕ is carried

out as bitwise sum modulo 2 of all the corresponding entries of matrices K

and M .

For example:

3⊕ 10 means 0011⊕ 1010 which is equals to 1001 means 9. So bitwise sum

modulo 2 of 3 and 10 is 9.

5. Bob will compute his three public matrices (B1, B2, F ),

where
B1 = Y −1Z1Y,

B2 = Y −1Z2Y

F =V QY

and send this to Alice altogether with ciphertext C.

Decryption: With the help of Bob’s public keys and her own private keys, Alice

performs the decryption in the following way.

1. By using public matrices (B1, B2) of Bob, Alice computes

Y −1UY = PU(B1).PU(B2),

where U = PU(Z1).PU(Z2).

2. She then takes the public matrix F of Bob, and raise it to the power matrix

X on left and Y −1UY to the right, which results in same matrix as key

matrix K.

K = XF Y −1UY = XVQUY (4.7)

3. Alice can decrypt the ciphertext C by using encryption key K as follows.

M = K ⊕ C = K ⊕K ⊕M. (4.8)

Correctness: The correctness of the above mentioned Asymmetric cipher can be

identified with the help of following demonstration.
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From equation 4.5, we have

PV (A1).PV (A2) = XVX−1 = W (4.9)

Let us consider a random polynomial PV (x) = ax2 + bx, by using this polynomial

along with equations 4.1, 4.2 in PV (A1) and PV (A2), we get

PV (A1) = PV (XZ1X
−1)

= a(XZ1X
−1)2 + b(XZ1X

−1)

= a(XZ1X
−1XZ1X

−1) + b(XZ1X
−1)

= a(XZ1Z1X
−1) + b(XZ1X

−1)

= a(XZ2
1X
−1) + b(XZ1X

−1)

= X(aZ2
1X
−1 + bZ1X

−1)

= X(aZ2
1 + bZ1)X

−1

= XPV (Z1)X
−1

PV (A2) = PV (XZ2X
−1)

= a(XZ2X
−1)2 + b(XZ2X

−1)

= a(XZ2X
−1XZ2X

−1) + b(XZ2X
−1)

= a(XZ2Z2X
−1) + b(XZ2X

−1)

= a(XZ2
2X
−1) + b(XZ2X

−1)

= X(aZ2
2X
−1 + bZ2X

−1)

= X(aZ2
2 + bZ2)X

−1

= XPV (Z2)X
−1

By putting these values in left hand side of 4.5, we have

PV (A1).PV (A2) = {XPV (Z1)X
−1}.{XPV (Z2)X

−1}

= XPV (Z1)X
−1XPV (Z2)X

−1

= XPV (Z1)PV (Z2)X
−1
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Using equation 4.4 in above equation, we get

PV (A1).PV (A2) = XVX−1

Also from 4.5, we have

XVX−1 = W

By multiplying X on L.H.S of the above equation and using cancellation law, we

have

XVX−1X = WX

XV = WX

Hence this completes the proof.

Remark 4.1.3 To compute the given in example of the article [23], let us con-

sider an illustrative example by taking another random non-singular matrix X and

all the other parameters as per article.

X =


3 0 3

3 1 2

2 3 2

, |X| = 1 6= 0.

Example 4.1.4 Alice and Bob agree on a public platform group defined over

S = Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}.

Since a4 = 1 ∀ a ∈ Z∗15 and the power ring is defined over R = Z4. Note that

all the base matrices are taken from platform group under modulo 15 and all the

power matrices are taken from power ring under modulo 4.

Setup: Alice and Bob consent on public matrix Q to be base matrix and two

non-commuting matrices Z1 and Z2 to be power matrices.
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Q =


2 7 13

8 2 7

13 7 8

, Z1 =


3 3 1

3 2 2

0 0 3

, Z2 =


3 3 0

0 1 1

3 3 3


Let us suppose that Alice’s secret non singular power matrix is

X =


3 0 3

3 1 2

2 3 2

, |X| = 1 6= 0.

Alice choose a secret polynomial PU(x) = x2 + 3x and calculates the secret power

matrix U as

U = PU(Z1).PU(Z2)

=


27 24 15

24 19 19

0 0 18




18 21 3

3 7 7

27 30 21



=


963 1185 564

1002 1207 604

486 540 378



=


3 1 0

2 3 0

2 0 2

 mod 4

She calculates matrix E as
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E = XQU

=



3 0 3

3 1 2

2 3 2




2 7 13

8 2 7

13 7 8





3 1 0

2 3 0

2 0 2



=


11 14 1

1 14 1

8 4 4

 mod 15

To compute her public matrices, she has to calculate inverse of X by using X−1 =

Adj(X)/det(X). Firstly she will find det(X) = 9 = 1 mod 4 , calculates its inverse

by using extended euclidean algorithm 2.6.1. As (1)−1 mod 4 = 1 and multiply

inverse of det(X) with Adj(X) to get the inverse of X as

X−1 =


0 1 1

2 0 3

3 3 3


Alice public matrices A1 and A2 are computed as follows.

A1 = XZ1X
−1

=


3 0 3

3 1 2

2 3 2




3 3 1

3 2 2

0 0 3




0 1 1

2 0 3

3 3 3



=


54 45 72

55 45 78

66 57 93


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=


2 1 0

3 1 2

2 1 1

 mod 4

A2 = XZ2X
−1

=


3 0 3

3 1 2

2 3 2




3 3 0

0 1 1

3 3 3




0 1 1

2 0 3

3 3 3



=


63 45 99

53 36 84

57 39 84



=


3 1 3

1 0 0

1 3 0

 mod 4

Alice public key is PuKA = (A1, A2, E) and her private key is PrKA = (X,U).

Encryption: Let Bob wants to send encrypted message to Alice. Since all the

base matrices are taken from Z∗15 under modulo 15, therefore the elements of

message matrix M will be coded under 4 bits. So M = {mij}, where mij ∈ Z16.

M =


10 8 3

13 2 12

14 2 3


Bob performs encryption with the help of Alice’s public key PuKA.
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He selects his secret non-singular power matrix Y as

Y =


0 1 3

1 2 1

3 0 2


Bob choose a secret polynomial PV (x) = 2x2+x and calculates the power matrices

V and W as

V = PV (Z1).PV (Z2)

=


39 33 25

33 28 28

0 0 21




21 27 6

6 9 9

39 45 27



=


1992 2475 1206

1953 2403 1206

819 945 567



=


0 3 2

1 3 2

3 1 3

 mod 4

W = PV (A1).PV (A2)

=


16 7 4

29 13 10

20 9 7




29 25 21

7 2 6

13 5 6



=


565 434 402

1062 801 747

734 553 516





An Improved Asymmetric Cipher Based on MPF 58

=


1 2 2

2 1 3

2 1 0

 mod 4

He then calculates key matrix as

K = WEY = XVQUY

=



1 2 2

2 1 3

2 1 0




11 14 1

1 14 1

8 4 4





0 1 3

1 2 1

3 0 2



=


14 14 1

14 2 13

14 1 14

 mod 15

Message encrypted in ciphertext as the bit-wise sum modulo 2 of all the corre-

sponding entries of K and M .

C = K ⊕M

=


14 14 1

14 2 13

14 1 14

⊕


10 8 3

13 2 12

14 2 3



=


4 6 2

3 0 1

0 3 13


To compute her public matrices, he has to calculate inverse of Y by using Y −1 =

Adj(Y )/det(Y ). Firstly he will find det(Y ) = −17 = 3 mod 4 , calculates its in-

verse by using extended euclidean algorithm 2.6.1 as (3)−1 mod 4 = 3 and multiply
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inverse of det(Y ) with Adj(Y ) to get the inverse of Y as

Y −1 =


0 2 1

3 1 1

2 1 1


He calculates his public power matrices (B1, B2, F ) as follows.

B1 = Y −1Z1Y

=


0 2 1

3 1 1

2 1 1




3 3 1

3 2 2

0 0 3




0 1 3

1 2 1

3 0 2



=


25 14 36

35 34 63

29 25 49



=


1 2 0

3 2 3

1 1 1

 mod 4

B2 = Y −1Z2Y

=


0 2 1

3 1 1

2 1 1




3 3 0

0 1 1

3 3 3




0 1 3

1 2 1

3 0 2



=


20 13 24

25 38 57

22 29 45





An Improved Asymmetric Cipher Based on MPF 60

=


0 1 0

1 2 1

2 1 1

 mod 4

F = VQY

=



0 3 2

1 3 2

3 1 3




2 7 13

8 2 7

13 7 8





0 1 3

1 2 1

3 0 2



=


11 2 1

14 1 14

1 7 14

 mod 15

Bob sends his public triplet keys (B1, B2, F ) along with ciphertext C to Alice.

Decryption: Alice will now decrypt the message in following steps.

Alice will use her secret polynomial PU(x) and evaluates the power matrix Y −1UY .

Y −1UY = PU(B1).PU(B2)

=


10 12 6

21 19 18

8 8 7




1 5 1

7 12 6

9 8 5



=


148 242 112

316 477 225

127 192 91



=


0 2 0

0 1 1

3 0 3

 mod 4
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Alice calculate the key matrix as

K = XF Y −1UY = XVQUY

XF Y −1UY =



3 0 3

3 1 2

2 3 2




11 2 1

14 1 14

1 7 14





0 2 0

0 1 1

3 0 3



=


14 14 1

14 2 13

14 1 14

 mod 15

Alice will now decrypt the original message M .

M = C ⊕K

=


4 6 2

3 0 1

0 3 13

⊕


14 14 1

14 2 13

14 1 14



=


10 8 3

13 2 12

14 2 3



4.2 An Improved Asymmetric Cipher

In this section, we will propose and explore a new and improved version of the

cryptosystem described above. To design the more secure cipher, we have used

General linear group of matrices over Galois Field GF (pq) alongwith the matrix

power function. We have chosen our platform group as Galois Field GF (pq) that

engage computational difficulty of the discrete log problem (DLP) and conjugacy
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search problem (CSP). The overall scheme is explained with the help of examples.

The key generation and the encryption decryption computations are carried out

with the help of the computer algebra system ApCoCoA [28].

4.2.1 Suggested Parameters of the Improved Cipher

Figure 4.1: Asymmetric Cipher.

The algorithm of asymmetric cipher based on matrix power function is briefed in

the above Figure 4.1.

In [23] authors suggested “The use ofGL(n,Zp) for implementing proposed scheme,

where GL(n, Zp) is general linear group of matrices of order n over the finite field

Zp”. To enhance the security of cipher one needs to enlarge the key space, for

this reason we have proposed this modification and have enlarge the key space

and message space by using GF (pq) as the extension of GF (p). We have used

Galois Field GF (pq) as our platform and all the base matrices are taken from this
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field. All the operations performed here are associative and commuting by default.

According to the theme of matrix power function, we have to take power matrices

from the matrix ring whose order is the totient of the chosen Galois field’s order.

4.2.2 Illustrative Examples

In this subsection, we will explain the modified and improved version of asymmetric

cipher based on matrix power function with the help of examples.

Let us consider some examples to demonstrate our proposed scheme.

Example 4.2.1 Alice and Bob agree on a public platform group defined over

extended Galois field GF (28). As in this field we need an irreducible polynomial to

perform addition and multiplication. So let us take m(x) = (x8 +x4 +x3 +x+ 1).

All the calculation followed in base matrices will be executed under the modulo

(m(x)). Let us consider the order of matrices will be 2.

Since order of our Galois field is 256 and the power ring should be defined over

the totient of the order of Galois field. Hence, powering matrix will be taken from

the General linear group GL(2,Z255). Reductions of all the powering matrix will

be under mod 255.

Setup: Alice and Bob consent on public matrix Q to be base matrix and two

non-commuting matrices Z1 and Z2 to be power matrices.

Q =

x6 + x5 + x4 x3 + x2 + 1

x7 + 1 x2 + x

 ∈ GL(2;GF (28)),

Z1 =

175 2

15 200

 and Z2 =

213 74

6 109

 ∈ GL(2;Z256)

Let us suppose that Alice’s secret non singular power matrix is

X =

 98 35

201 161


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Alice choose a secret polynomial PU(x) = x2 + 2x and calculates the secret power

matrix U as

U = PU(Z1).PU(Z2)

=

31005 754

5655 40430


46239 23976

1944 12543


=

141 117

30 105

 mod 255

She calculates matrix E as

E = XQU

=


98 35

201 161

x6 + x5 + x4 x3 + x2 + 1

x7 + 1 x2 + x



141 117

30 105



=

 x6 + x2 x7 + x6 + x4 + x3 + x+ 1

x7 + x4 + x3 + x2 x7 + x6 + x5 + x4 + x+ 1

 mod (m(x))

To compute her public matrices, she has to calculate inverse of X by using

X−1 = Adj(X)/det(X). Firstly she will find det(X) = 73 mod 255, calculates its

inverse by using extended euclidean algorithm 2.6.1. As (73)−1 mod 255 = 7 and

multiply inverse of det(X) with Adj(X) to get the inverse of X as

X−1 =

107 10

123 176


Alice public matrices A1 and A2 are computed as follows.

A1 = XZ1X
−1

=

 98 35

201 161


175 2

15 200


107 10

123 176


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=

148 201

186 227

 mod 255

A2 = XZ2X
−1

=

 98 35

201 161


213 74

6 109


107 10

123 176


=

54 57

87 13

 mod 255

Alice’s public keys are PuKA = (A1, A2, E) and her private keys are

PrKA = (X,U).

Encryption: Let Bob wants to send encrypted message to Alice. Since all the

base matrices are taken from GF (28) under modulo m(x) = (x8 +x4 +x3 +x+ 1),

therefore the elements of message matrix M will be coded under 8 bits. So M =

{mij}, where mij ∈ GL(2, 28).

M =

x5 + x2 + 1 x4 + x3 + x

x7 + x6 x7 + x6 + x2



Bob performs encryption with the help of Alice’s public key PuKA.

He selects his secret non-singular power matrix Y as

Y =

117 223

97 121


Bob choose a secret polynomial PV (x) = 3x2+x and calculates the power matrices

V and W as

V = PV (Z1).PV (Z2)
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=

92140 2252

16890 120290


137652 71558

5802 37084


=

159 73

0 65

 mod 255

W = PV (A1).PV (A2)

=

178018 226326

209436 266972


23679 11514

17574 15397


=

111 234

162 113

 mod 255

He then calculates key matrix as

K = WEY = XVQUY

K =


111 234

162 113

 x6 + x2 x7 + x6 + x4 + x3 + x+ 1

x7 + x4 + x3 + x2 x7 + x6 + x5 + x4 + x+ 1



117 223

97 121



=

x7 + x5 + x3 + x2 + x x6 + x5 + x2 + x

x7 + x5 + x+ 1 x6

 mod (m(x))

Message encrypted in ciphertext as the bit-wise sum modulo 2 of all the corre-

sponding entries of K and M .

C = K ⊕M

=

x7 + x5 + x3 + x2 + x x6 + x5 + x2 + x

x7 + x5 + x+ 1 x6

⊕
x5 + x2 + 1 x4 + x3 + x

x7 + x6 x7 + x6 + x2


=

10101110 01100110

10100011 01000000

⊕
00100101 00011010

11000000 11000100


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=

10001011 01111100

01100011 10000100


=

x7 + x3 + x+ 1 x6 + x5 + x4 + x3 + x2

x6 + x5 + x+ 1 x7 + x2


To compute his public matrices, he has to calculate inverse of Y by using

Y −1 = Adj(Y )/det(Y ). Firstly he will find det(Y ) = 176 mod 255, calculates its

inverse by using extended euclidean algorithm 2.6.1 as (176)−1 mod 255 = 71 and

multiply inverse of det(Y ) with Adj(Y ) to get the inverse of Y as

Y −1 =

176 232

253 147


He calculates his public power matrices (B1, B2, F ) as follows.

B1 = Y −1Z1Y

=

176 232

253 147


175 2

15 200


117 223

97 121


=

144 122

32 231

 mod 255

B2 = Y −1Z2Y

=

176 232

253 147


213 74

6 109


117 223

97 121


=

164 92

242 158

 mod 255

F = VQY
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=


159 73

0 65

x6 + x5 + x4 x3 + x2 + 1

x7 + 1 x2 + x



117 223

97 121



=

 x7 + x5 + x4 + x x5 + x3 + 1

x7 + x5 + x4 + x3 + x2 + 1 x6 + x5 + x2 + x

 mod (m(x))

Bob sends his public triplet keys (B1, B2, F ) along with ciphertext C to Alice.

Decryption: Alice will now decrypt the message in following steps.

Alice will use her secret polynomial PU(x) and evaluates the power matrix Y −1UY .

Y −1UY = PU(B1).PU(B2)

=

24928 45994

12064 57727


49488 29808

78408 47544


=

246 150

93 0

 mod 255

Alice calculate the key matrix K and decrypts the original message M as,

K = XFY −1UY = XV QUY

XFY −1UY =


98 35

201 161

 x7 + x5 + x4 + x x5 + x3 + 1

x7 + x5 + x4 + x3 + x2 + 1 x6 + x5 + x2 + x



246 150

93 0



=

x7 + x5 + x3 + x2 + x x6 + x5 + x2 + x

x7 + x5 + x + 1 x6

 mod (m(x))

M = C ⊕K

=

x7 + x3 + x + 1 x6 + x5 + x4 + x3 + x2

x6 + x5 + x + 1 x7 + x2

⊕
x7 + x5 + x3 + x2 + x x6 + x5 + x2 + x

x7 + x5 + x + 1 x6


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=

10001011 01111100

01100011 10000100

⊕
10101110 01100110

10100011 01000000


=

00100101 00011010

11000000 11000100


=

x5 + x2 + 1 x4 + x3 + x

x7 + x6 x7 + x6 + x2



Hence, the obtained mesaage is same as sended by the Bob.

Example 4.2.2 Let us take another example of the given scheme using matrices

of order 3. Two participants, let us say A and B agree on a public platform

group defined over extended galois field GF (23). As in this field we need an

irreducible polynomial to perform addition and multiplication. So let us take

m(x) = (x3 +x+1). All the calculation followed in base matrices will be executed

under the modulo (m(x)). Let us consider the order of matrices will be 3.

Since order of our Galois field is 8 and the power ring should be defined over the

totient of the order of Galois field. Hence, powering matrix will be taken from the

General linear group GL(3, GF (23)). Reductions of all the powering matrix will

be under mod 7.

Setup: Both the participants A and B consent on public matrix Q to be base

matrix and two non-commuting matrices Z1 and Z2 to be power matrices.

Q =


x2 + 1 x 1

x2 + x x+ 1 x2

x x2 + x+ 1 1

 ∈ GL(3;GF (23),

Z1 =


5 2 3

4 4 5

1 0 2

 and Z2 =


2 1 6

6 5 4

3 2 1

 ∈ GL(3;Z7)
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Let us suppose that A’s secret non singular power matrix is

X =


2 4 0

5 1 2

2 6 3


A choose a secret polynomial PU(x) = 2x2 + x and calculates the secret power

matrix U as

U = PU(Z1).PU(Z2)

=


77 38 65

86 52 89

15 4 16




58 39 50

114 83 124

45 32 55



=


5 5 6

4 4 5

2 1 5

 mod 7

She calculates matrix E as

E = XQU

=



2 4 0

5 1 2

2 6 3



x2 + 1 x 1

x2 + x x+ 1 x2

x x2 + x+ 1 1





5 5 6

4 4 5

2 1 5



=


x2 x x2 + x+ 1

x2 + x x2 x

x2 x2 + x 1

 mod (m(x))

To compute her public matrices, she has to calculate inverse of X by using X−1 =

Adj(X)/det(X).
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Firstly she will find det(X) = 1 mod 7 , calculates its inverse by using extended

euclidean algorithm 2.6.1. As (1)−1 mod 7 = 1 and multiply inverse of det(X)

with Adj(X) to get the inverse of X as

X−1 =


5 2 1

3 6 3

0 3 3


A’s public matrices A1 and A2 are computed as follows.

A1 = XZ1X
−1

=


2 4 0

5 1 2

2 6 3




5 2 3

4 4 5

1 0 2




5 2 1

3 6 3

0 3 3



=


1 5 3

1 1 5

3 4 2

 mod 7

A2 = XZ2X
−1

=


2 4 0

5 1 2

2 6 3




2 1 6

6 5 4

3 2 1




5 2 1

3 6 3

0 3 3



=


3 6 3

5 5 4

2 2 0

 mod 7

A’s public keys are PuKA = (A1, A2, E) and her private keys are

PrKA = (X,U).

Encryption: Let B wants to send encrypted message to A. Since all the base

matrices are taken from GF (23) under modulo m(x) = (x3 + x+ 1), therefore the
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elements of message matrix M will be coded under 3 bits. So M = {mij}, where

mij ∈ GL(3, 23).

M =


x+ 1 x2 + 1 x

x2 + x+ 1 x2 + x x2

1 x x2 + x+ 1



B performs encryption with the help of A’s public key PuKA.

He selects his secret non-singular power matrix Y as

Y =


6 1 4

2 2 5

3 4 3


B choose a secret polynomial PV (x) = 3x2 + 2x and calculates the power matrices

V and W as

V = PV (Z1).PV (Z2)

=


118 58 99

131 80 136

23 6 25




88 59 78

174 127 188

69 49 83



=


0 6 3

0 4 6

5 5 6

 mod 7

W = PV (A1).PV (A2)

=


47 76 108

53 80 64

45 89 103

.


141 174 105

154 199 113

52 70 42


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=


0 6 6

0 5 3

4 5 5

 mod 7

He then calculates key matrix as

K = WEY = XVQUY

K =



0 6 6

0 5 3

4 5 5




x2 x x2 + x+ 1

x2 + x x2 x

x2 x2 + x 1





6 1 4

2 2 5

3 4 3



=


x2 + x+ 1 x2 + 1 x2 + 1

x2 + x+ 1 x2 + 1 x2 + x+ 1

1 x+ 1 x2 + x+ 1

 mod (m(x))

Message encrypted in ciphertext as the bit-wise sum modulo 2 of all the corre-

sponding entries of K and M .

C = K ⊕M

=


x2 + x+ 1 x2 + 1 x2 + 1

x2 + x+ 1 x2 + 1 x2 + x+ 1

1 x+ 1 x2 + x+ 1

⊕


x+ 1 x2 + 1 x

x2 + x+ 1 x2 + x x2

1 x x2 + x+ 1



=


111 101 101

111 101 111

001 011 111

⊕


011 101 010

111 110 100

001 010 111


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=


100 000 111

000 011 011

000 001 000



=


x2 0 x2 + x+ 1

0 x+ 1 x+ 1

0 1 0


To compute her public matrices, he has to calculate inverse of Y by using

Y −1 = Adj(Y )/det(Y ). Firstly he will find det(Y ) = 3 mod 7 , calculates its in-

verse by using extended euclidean algorithm 2.6.1 as (3)−1 mod 7 = 5 and multiply

inverse of det(Y ) with Adj(Y ) to get the inverse of Y as

Y −1 =


0 2 6

3 2 2

3 0 1


He calculates his public power matrices (B1, B2, F ) as follows.

B1 = Y −1Z1Y

=


0 2 6

3 2 2

3 0 1




5 2 3

4 4 5

1 0 2




6 1 4

2 2 5

3 4 3



=


5 6 1

2 5 1

1 2 1

 mod 7

B2 = Y −1Z2Y
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=


0 2 6

3 2 2

3 0 1




2 1 6

6 5 4

3 2 1




6 1 4

2 2 5

3 4 3



=


0 4 6

3 2 6

2 4 6

 mod 7

F = VQY

=



0 6 3

0 4 6

5 5 6



x2 + 1 x 1

x2 + x x+ 1 x2

x x2 + x+ 1 1





6 1 4

2 2 5

3 4 3



=


x2 + x+ 1 x x

x2 x2 + x+ 1 1

x2 + x 1 1

 mod (m(x))

B sends his public triplet keys (B1, B2, F ) along with ciphertext C to A.

Decryption: A will now decrypt the message in following steps. A will use her

secret polynomial PU(x) and evaluates the power matrix Y −1UY .

Y −1UY = PU(B1).PU(B2)

=


81 130 25

44 83 17

21 38 9




48 68 126

39 82 138

50 84 150



=


2 5 4

4 5 5

0 1 0

 mod 7
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A calculate the key matrix as

K = XFY −1UY = XV QUY

XFY −1UY =



2 4 0

5 1 2

2 6 3



x2 + x + 1 x x

x2 x2 + x + 1 1

x2 + x 1 1





2 5 4

4 5 5

0 1 0



=


x2 + x + 1 x2 + 1 x2 + 1

x2 + x + 1 x2 + 1 x2 + x + 1

1 x + 1 x2 + x + 1

 mod (m(x))

A will now decrypt the original message M .

M = C ⊕K

=


x2 0 x2 + x + 1

0 x + 1 x + 1

0 1 0

⊕

x2 + x + 1 x2 + 1 x2 + 1

x2 + x + 1 x2 + 1 x2 + x + 1

1 x + 1 x2 + x + 1



=


100 000 111

000 011 011

000 001 000

⊕


111 101 101

111 101 111

001 011 111



=


011 101 010

111 110 100

001 010 111



=


x + 1 x2 + 1 x

x2 + x + 1 x2 + x x2

1 x x2 + x + 1



4.3 Security Analysis

In this section, we are going to present the security analysis of the our proposed

modified work. Our research presents the platform semi-groups with particular

Galois fields GF (pq) in base matrices. Due to high level of security and large
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key space, Galois fields are incorporated in this scheme, an attacker must have to

search this wide space to attempt for brute force attack. We have used the matrix

power function for the construction of our cipher as MPF is a candidate one-way

function (OWF), since the effective (polynomial-time) inversion algorithm for it is

not yet known.

4.3.1 Algebraic Attack

Algebraic attack is a cryptanalytic technique based on solution of system by reduc-

ing the whole system in the form of equations. In the author’s proposed scheme

[23], if an attacker find the matrices X̃, Ỹ and Ũ which satisfies the given equa-

tions, then the proposed cipher of non-commuting cryptography based on matrix

power function can be compromised.

XAX−1 = B,

Y −1AY = D,

XQU = E,

U =
n−1∑
i=0

aiA
i.

So to enhance the security and complexity of discrete log Problem, we present this

modified form. As in this work, our basic platform is Galois field GF (pq) and to

search for this big space and solve the decomposition problem, algebraic attack

will be in feasible.

4.3.2 Brute Force Attack

If we choose 60 decimal digits as order of prime p and polynomial with degree

greater than 10 in the Galois field GF (pq), we can acquire a secure protocol, so

that the brute force attack will become in-feasible. The public and private matrices

should have 2n − 1 form of order, so that it become a Mersenne prime.
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4.3.3 Known Plaintext Attack

In this kind of attack, attacker has the apprehension of some of the ciphertext as

well as its corresponding plaintext. On this basis, he attempts to recover the key

or makes a logical algorithm to decode any further ciphertexts. Let us assume

that attacker has the knowledge of some previous communication and has the pair

(My, Cy) of corresponding plaintext My and ciphertext Cy. Using this information

he wants to reveal the secret communication key, to further discover the next secret

session having the corresponding plaintext My+1 and ciphertext (My+1, Cy+1). In

our scheme, Firstly attacker will try to find the unknown matrices XV and UY ,

when Q is given publicly, to reveal the key K = XVQUY . This kind of attack is

infeasible on our scheme as it provides the following features.

i. X and Y are randomly generated matrices of both the participants, by chang-

ing these key will get effected.

ii. For every communication session key will be different.

iii. Calculation of U and V is based on randomly generated polynomials of both

the participants. Every time polynomial change it will effect the key.

So, for every session key keeps on changing, this feature provides the security

against known plaintext attack as the adversary cannot get his hands on new key

on the basis of previous keys.

Let us consider an example to see how known plaintext attack can be mounted on

Example 4.2.1 by an attacker.

Example 4.3.1 Suppose an attacker has the knowledge of some previous set of

plaintext and corresponding ciphertext (M1, C1) and he wants to find the secret key

K to reveal the further secret session. In Example 4.2.1, public matrices of Alice

are PuKA = (A1, A2, E) and public matrices of Bob are PuKB = (B1, B2, F ),

while secret matrices of Alice are PrKA = (X,U) and secret matrices of Bob are

PrKB = (Y, V ). Also there are secret polynomials used by both the parties to

generate their secret matrices.
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To find key K = XVQUY , an attacker needs X, Y , U and V , but as in our scheme

X and Y are randomly generated and U and V are are also random because

they are generated with the help of random polynomial. So, every session key

will change for every randomly generated secret matrices. Hence, attacker will be

unable to find the next session key on the basis of prior knowledge of plaintext

and ciphertext.

4.3.4 Chosen Ciphertext Attack

Recall that an attacker can choose any ciphertext C
′

and can have its correspond-

ing plaintext M
′
. In equation, C

′
= K ⊕ M

′
the attacker substitutes C

′
and

M
′

and gets the corresponding key K by solving it. Let us assume that attacker

mounts this attack on the proposed scheme and he gets successful in his attempt.

But in the proposed scheme, this attack is infeasible as key K gets changed when-

ever the encryption algorithm gets changed while encrypting a specified message

M . So if he gets a hold on a specific key K, he will not be able to decrypt further

messages.
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4.4 Conclusion

In this thesis, we have reviewed an article as well as proposed a new key generation

algorithm for asymmetric key encryption by using in particular, extended Galois

Field GF (pq).

Firstly, we proposed a new key exchange protocol that utilize matrices over Zp
and GF (pq). We have used enhanced matrix power function to create this scheme

by introducing group of matrices over Zp with group of matrices over extended

Galois field GF (pq) that ensures large key space. Secondly, we review the research

paper “New Asymmetric Cipher of Non-Commuting Cryptography Class Based

on Matrix Power Function” [23] that utilize enhanced matrix power function. In

non-commuting cryptography, this proposed cipher has an effective recognition in

restricted computational environments. On the basis of this review, we have pro-

posed a modifiedand improved version of the asymmetric cipher based on matrix

power function accompanied with extended Galois field GF (pq).

For the implementations, we have generated codes by employing platform of com-

puter algebra system ApCoCoA [28]. We gave illustrative examples of our pro-

posed protocol and aysmmetric cipher by employing extended Galois field. One

can extend our proposed work by using some other non-commutative algebraic

structure. Also as a further work, one can also try implementations of our schemes

using some other platform groups.



Appendix A

ApCoCoA Codes for

Cryptographic Primitive

Construction Based on Enhanced

Matrix Power Function

This Appendix contains ApCoCoA Codes for Cryptographic primitive construc-

tion based on enhanced matrix power function.

The calculation of LMPF(A,B), RMPF(A,B), GFP(P,Q), ModInv, Poly-

Mod, PolyInvM, MatGF is performed in computer algebra system ApCoCoA.

A.1 Left Sided Matrix Power Function

Following program computes left matrix power function BA. where input matrices

are always square matrices.

Define LMPF(A,B)

Prod:=1;

Rows:=NumRows(A);Cols:=NumCols(A);

C:=NewMat(Rows,Cols,1);

81
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For K:=1 To Rows Do

For J:=1 To Rows Do

For I:=1 To Rows Do

Prod:=Prod*A[I][J]^B[K][I];

EndFor;

C[K][J]:=Prod;

Prod:=1;

EndFor;

EndFor;

Return C;

EndDefine;

A.2 Right Sided Matrix Power Function

Following program computes right matrix power function AB. where input matri-

ces are always square matrices.

Define RMPF(A,B)

Prod:=1;

Rows:=NumRows(A);Cols:=NumCols(A);

C:=NewMat(Rows,Cols,1);

For K:=1 To Rows Do

For J:=1 To Rows Do

For I:=1 To Rows Do

Prod:=Prod*A[K][I]^B[I][J];

EndFor;

C[K][J]:=Prod;

Prod:=1;

EndFor;
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EndFor;

Return C;

EndDefine;

A.3 Elements of Extended Galois Field

GFP(P,Q) calculate the elements of galois field. The inputs are P,Q where P is

the prime number and Q is any positive integer.

Define GFP(P,Q);

Re:=[];

For A:= 0 To P-1 Do

GF:=Poly(A);

Append(Re,GF);

EndFor;

GF1:=Re;

GF2:=Re;

For A:= 1 To Q-1 Do

For J:=1 To P-1 Do

Foreach P In GF1 Do

F:=J*x^A+P;

Append(GF2,F);

EndForeach;

EndFor;

GF1:=GF2;

EndFor;

Return GF2;

EndDefine;
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A.4 Modular Inverses

ModInv calculate the inverse of a number under the mod . It require the input

Q,M where Q is number and M is mod . This function uses the extended

euclidean inverse algorithm.

Define ModInv(Q,M);

A1:=1;A2:=0;A3:=M;

B1:=0;B2:=1;B3:=Q;

While B3<0 Do

B3:=B3+M;

EndWhile;

While B3<>1 Do

Q:=Div(A3,B3);

--If Q=0 Then Error(" Q is 0");EndIf;

T1:=A1-Q*B1;T2:=A2-Q*B2;T3:=A3-Q*B3;

A1:=B1;A2:=B2;A3:=B3;

B1:=T1;B2:=T2;B3:=T3;

If B2<0 Then B2:=B2+M; EndIf;

If B3=1 Then Return B2;EndIf;

If B3=0 Then Return("Not Invertible!"); EndIf;

EndWhile;

--If B2<0 Then B2:=B2+M; EndIf;

Return B2;

EndDefine;

A.5 Polynomial Modulo

PolyMod gives the polynomial F that is reduced on some polynomial mod M .

Define PolyMod(F,M)

If Type(F)=RATFUN Then

If Mod(Den(LC(F.Num)),M)=0 Then
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D:=Den(LC(F.Num));

D2:=D*F.Den-D*LPP(F.Den);

If D2= 0 Then Error("Zero Denominator . . .");EndIf;

F:=D*F.Num/(D2);

Return PolyMod(F,M);

EndIf;

CoefNum:=Coefficients(F.Num);CoefDen:=Coefficients(F.Den);

For I:= 1 To Len(CoefNum) Do

If Type(CoefNum[I])=RAT Then

CoefNum[I]:=Mod(CoefNum[I].Num*ModInv(CoefNum[I].Den,M),M);

Else

CoefNum[I]:=Mod(CoefNum[I],M);

EndIf;

EndFor;

For I:= 1 To Len(CoefDen) Do

If Type(CoefDen[I])=RAT Then

CoefDen[I]:=Mod(CoefDen[I].Num*ModInv(CoefDen[I].Den,M),M);

Else

CoefDen[I]:=Mod(CoefDen[I],M);

EndIf;

EndFor;

NewNum:=ScalarProduct(CoefNum,Support(F.Num));

NewDen:=ScalarProduct(CoefDen,Support(F.Den));

If NewDen= 0 Then Error("Zero Denominator . . .");EndIf;

Return NewNum/NewDen;

EndIf;

Coef:=Coefficients(F);

For I:= 1 To Len(Coef) Do

If Type(Coef[I])=RAT Then

Coef[I]:=Mod(Coef[I].Num*ModInv(Coef[I].Den,M),M);

Else

Coef[I]:=Mod(Coef[I],M);

EndIf;
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EndFor;

Return ScalarProduct(Coef,Support(F));

EndDefine;

A.6 Polynomial Inverse Modulo

PolyInvM Input F polynomial M mod polynomial and Md is Mod in number.

This function calculates inverse of polynomial F on polynomial M under mod Md

using Extended Euclidean Inverse algorithm.

Define PolyInvM(F,M,Md)

F:=NR(F,[M]);

If MakeSet(Log(F))=[0] Then Return ModInv(LC(F),Md); EndIf;

A1:=1;A2:=0;A3:=PolyMod(M,Md);

B1:=0;B2:=1;B3:=PolyMod(F,Md);

While MakeSet(Log(B3))<>[0] Do

D:=DivAlg(A3,[B3]);

Q:=D.Quotients[1];

Coef:=Coefficients(Q);

For I:= 1 To Len(Coef) Do

C:=Coef[I];

Coef[I]:=Mod(C.Num*ModInv(C.Den,Md),Md);

EndFor;

Q:= ScalarProduct(Coef,Support(Q));

If Q=0 Then Error(" Q is 0");EndIf;

T1:=PolyMod(A1-Q*B1,Md);

T2:=PolyMod(A2-Q*B2,Md);

T3:=PolyMod(A3-Q*B3,Md);

A1:=B1;A2:=B2;A3:=B3;

B1:=T1;B2:=T2;B3:=T3;

If B3=1 Then

Return PolyMod(B2,Md);
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EndIf;

EndWhile;

If B3<>1 Then

Return PolyMod(NR(ModInv(LC(B3),Md)*B2,[M]),Md);

Else

Return PolyMod(B2,Md);

EndIf;

EndDefine;

A.7 Matrix Reduction Under Modulo in Galois

Field

MatGF is used to reduce elements of matrix A in extented galois field under

certain irreducible polynomial mod M.

Define MatGF(A,M)

Rows:=NumRows(A);Cols:=NumCols(A);

For I:=1 To Rows Do

For J:=1 To Cols Do

A[I][J]:=PolyMod(NR(A[I][J],[M]),2);

EndFor;

EndFor;

Return A;

EndDefine;

A.8 Matrix Reduction Under Modulo

ListModMat is used to reduce the Matrix into Mod Input J which is matrix and

M is mod.
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Define ListModMat(J,M)

Result:=[];

For I:=1 To NumRows(J) Do

K:=ListMod(J[I],M);

Append(Result,K);

EndFor;

Return Cast(Result,MAT);

EndDefine;
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